# **Application of Scalable Solver Techniques to Magnetized Plasma Problems in 2D and 3D**

A. H. Glasser and V. S. Lukin

PSI Center, University of Washington

Presented at the 50<sup>th</sup> Annual Meeting of the International Sherwood Fusion Theory Meeting Denver, Colorado, May 3-5, 2009





# **Organization of Presentation**

- ➤ Previous solver results for 2D MHD waves in a doubly periodic uniform plane
- New test problem: Magnetized Target Fusion, radially compressed compact toroid.
- Moving grid equations.
- > Results for cylindrically compressed FRC.
- > Status of solver.
- Future plans.





# **Physics-Based Preconditioning**

#### **Factorization and Schur Complement**

#### Linear System

$$\mathbf{L}\mathbf{u}=\mathbf{r},\quad \mathbf{L}\equivegin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix},\quad \mathbf{u}=egin{pmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \end{pmatrix},\quad \mathbf{r}=egin{pmatrix} \mathbf{r}_1 \ \mathbf{r}_2 \end{pmatrix}$$

#### **Factorization**

$$\mathbf{L} \equiv egin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \ \mathbf{L}_{21} & \mathbf{L}_{22} \end{pmatrix} = egin{pmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{L}_{21} \mathbf{L}_{11}^{-1} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{L}_{11} & \mathbf{0} \ \mathbf{0} & \mathbf{S} \end{pmatrix} egin{pmatrix} \mathbf{I} & \mathbf{L}_{11}^{-1} \mathbf{L}_{12} \ \mathbf{0} & \mathbf{I} \end{pmatrix}$$

## Schur Complement

$$\mathbf{S} \equiv \mathbf{L}_{22} - \mathbf{L}_{21} \mathbf{L}_{11}^{-1} \mathbf{L}_{12}$$





# **Exact and Approximate Inverse**

## **Preconditioned Krylov Iteration**

#### Inverse

$$\mathbf{L}^{-1} = egin{pmatrix} \mathbf{I} & -\mathbf{L}_{11}^{-1}\mathbf{L}_{12} \ \mathbf{0} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{L}_{11}^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{S}^{-1} \end{pmatrix} egin{pmatrix} \mathbf{I} & \mathbf{0} \ -\mathbf{L}_{21}\mathbf{L}_{11}^{-1} & \mathbf{I} \end{pmatrix}$$

#### **Exact Solution**

$$egin{aligned} \mathbf{s}_1 &= \mathbf{L}_{11}^{-1} \mathbf{r}_1, & \mathbf{s}_2 &= \mathbf{r}_2 - \mathbf{L}_{21} \mathbf{s}_1 \ & \mathbf{u}_2 &= \mathbf{S}^{-1} \mathbf{s}_2, & \mathbf{u}_1 &= \mathbf{s}_1 - \mathbf{L}_{11}^{-1} \mathbf{L}_{12} \mathbf{u}_2 \end{aligned}$$

### Preconditioned Krylov Iteration

$$\mathbf{P} pprox \mathbf{L}^{-1}, \quad (\mathbf{LP}) \left( \mathbf{P}^{-1} \mathbf{u} 
ight) = \mathbf{r}$$

Outer iteration preserves full nonlinear accuracy. Need approximate Schur complement S and scalable solution procedure for  $L_{11}$  and S.





## **Ideal MHD Waves**

## **Linearized, Normalized Equations**

$$egin{aligned} rac{\partial p}{\partial t} + \gamma 
abla \cdot \mathbf{v} &= 0, & rac{\partial \mathbf{b}}{\partial t} &= 
abla imes (\mathbf{v} imes \mathbf{B}) \\ rac{\partial \mathbf{v}}{\partial t} + 
abla \cdot \mathbf{T} &= 0, & \mathbf{T} &= (eta p + \mathbf{B} \cdot \mathbf{b}) \mathbf{I} - \mathbf{B} \mathbf{b} - \mathbf{b} \mathbf{B} \end{aligned}$$

## **Approximate Schur Complement**

$$\mathbf{S}\mathbf{v} = \mathbf{v} + 
abla \cdot \mathsf{T},$$

$$\mathbf{T} \equiv h^2 heta^2 \left\{ \left[ \mathbf{B} \cdot 
abla imes (\mathbf{v} imes \mathbf{B}) - \gamma eta 
abla \cdot \mathbf{v} 
ight] \mathbf{I} - \mathbf{B} 
abla imes (\mathbf{v} imes \mathbf{B}) - 
abla imes (\mathbf{v} imes \mathbf{B}) \mathbf{B} 
ight\}$$





## **Static Condensation**

- ightharpoonup Implicit time step requires linear system solution: L u = r.
- $\triangleright$  Direct solution time grows as  $n^3$ .
- ➤ Break up large matrix into smaller pieces: Interiors + Interface.
- > Small direct solves for interior.
- ➤ Interface solve by CG or GMRES, precoditioned with LU or ILU(k) on each processor, with Schwarz overlap between processors.
- ➤ Substantially reduces solution time, condition number.

|   | Interface | Γ, Latticev  | vork Grid |  |
|---|-----------|--------------|-----------|--|
|   | Interior  | Interior     | Interior  |  |
|   | Interior  | Interior     | Interior  |  |
|   | Interior  | Interior     | Interior  |  |
|   | Interfac  | e Γ, Lattice | work Grid |  |
| ı | '         | '            | 9         |  |



## **FETI-DP**

#### Finite Element Tearing and Interconnecting, Dual-Primal

➤ Break up large matrix into three pieces: interior + dual + primal.

- > Small direct solves for interior.
- ➤ Parallel direct solve for primal points.
- ➤ Matrix-free preconditioned GMRES for dual points.
- ➤ Primal solve provides information to dual problem about coarse global conditions, providing scalability.
- ➤ Interior preconditioner accelerates convergence of dual solve.





# **Weak Scaling Test Problem**

- ➤ Ideal or Hall MHD waves in a doubly periodic uniform plane.
- $\gt$  2D **k** vector in computational plane, 3D **B** vector specified by spherical angles about normal to plane. Continuous control of angle  $\theta$  between **k** and **B**.
- ➤ Initialize to pure eigenvector: fast (whistler), shear (kinetic Alfven), or slow wave.
- ➤ Unit cell: (knx, kny) full wavelengths.
- > Two test cases:
  - 1. Each processor has one unit cell. Scale up unit cells with nproc. Hold (nx,ny,np) fixed in each unit cell.
  - 2. One unit cell held fixed, scale up (nx,ny) with nproc. Splits wave length among multiple processors.
- $\triangleright$  1 64 processors on bassi debug queue.
- ➤ Largest test problem size: 16 x 16 wavelengths, 64 processors, 589,824 spatial locations, 6 physical degrees of freedom, 3,538,944 variables, 2 large time steps, CFL number ~100, 1 jacobian evaluation, wallclock time ~30 seconds.





## **FETI-DP Dual Condition Number**

MHD Slow Wave, Various k-B Angle  $\theta$ , Degrees









## **Wallclock Time to Solution**

MHD Slow Wave,  $\theta = 75^{\circ}$ , FETI-DP vs. Static Condensation







## **Solver Conclusions, Ideal MHD Waves**

#### Physics-Based Preconditioning

- Reduces matrix order requiring solution
- Improves condition number and diagonal dominance.
- Similar to time step split, but maintains full nonlinear accuracy.

#### > FETI-DP

- Provides scalable solver for SPD preconditioning equations, i.e. ideal MHD.
- Computational results verify analytical scalability theorem.
- Requires extension to non-SPD problems, such as Hall MHD.
- Primal solve requires minor modifications to achieve true scalability.
- 3D primal constraints require research.

#### Static Condensation

- Appears to be as scalable as FETI-DP on 1-64 processors.
- No increase in condition number and time as theta approache 90 degrees.
- Requires no extension for non-SPD problems.
- Already implemented for the 3D HiFi spectral element code (Sato).





# More Interesting Test Problem for Solver Development

CIC-1/00-0126 (11-99)



Fast radial compression of a compact toroid.





# **FRC** Equations

#### Dependent Variables

$$\mathbf{u} = (u_1, u_2, u_3, u_4, u_5, u_6) = (\rho, -A_{\phi}, \rho, \rho v_z, \rho v_r, J_{\phi})$$

#### Interior Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \quad \frac{3}{2} \frac{\partial p}{\partial t} + \nabla \cdot \left(\frac{5}{2} p \mathbf{v} - \kappa \cdot \nabla T\right) = \eta J_{\phi}^2 + \pi : \nabla \mathbf{v}$$

$$\frac{\partial}{\partial t} (-A_{\phi}) = v_r B_z - v_z B_r + \eta J_{\phi}, \quad J_{\phi} = \frac{A_{\phi}}{r^2} - \nabla^2 A_{\phi}$$

$$\frac{\partial}{\partial t} (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \mathbf{v} + p \mathbf{I} + \pi) = \mathbf{J} \times \mathbf{B}$$

Spitzer-Chodura resistivity  $\eta$ , Braginskii  $\kappa_{\parallel}$  and  $\kappa_{\perp}$ .

#### Top Boundary Conditions, r = R

$$\rho \text{ natural}, \quad \frac{\partial A_{\phi}}{\partial t} = 0, \qquad \frac{\partial}{\partial r} \left( \frac{p}{\rho} \right) = 0, \quad v_z = 0, \quad v_r = \dot{R}, \quad J_{\phi} = 0$$

#### Bottom Boundary Conditions, r = 0

$$\frac{\partial \rho}{\partial r} = \frac{\partial p}{\partial r} = \frac{\partial \rho v_z}{\partial r} = A_{\phi} = \rho v_r = J_{\phi} = 0$$

$$z \text{ periodic}$$





# **Moving Grid**

#### Rescaling Transformation

$$\mathbf{x}(\mathbf{y},t) \equiv \mathbf{T}(t) \cdot \mathbf{y}, \quad \mathbf{y}(\mathbf{x},t) \equiv \mathbf{T}^{-1}(t) \cdot \mathbf{x}, \quad u(\mathbf{x}(\mathbf{y},t),t) = u(\mathbf{T}(t) \cdot \mathbf{y},t)$$

$$\frac{\partial u}{\partial \mathbf{X}}\Big|_t = \frac{\partial}{\partial \mathbf{X}} \mathbf{y} \cdot \frac{\partial u}{\partial \mathbf{y}}\Big|_t = \mathbf{T}^{-1} \cdot \frac{\partial u}{\partial \mathbf{y}}\Big|_t, \quad \frac{\partial u}{\partial t}\Big|_x = \frac{\partial u}{\partial t}\Big|_y - \mathbf{V} \cdot \frac{\partial u}{\partial \mathbf{X}}, \quad \mathbf{V} \equiv \frac{\partial \mathbf{X}}{\partial t}\Big|_y = \dot{\mathbf{T}} \cdot \mathbf{y}$$

#### Transformation of Flux-Source Form

$$\begin{split} A\frac{\partial u}{\partial t}\Big|_x + \frac{\partial}{\partial \mathbf{x}}\cdot\mathbf{F}\Big|_t &= S\\ A\frac{\partial u}{\partial t}\Big|_y - A\mathbf{V}\cdot\frac{\partial u}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{x}}\cdot\mathbf{F} &= S\\ A\frac{\partial u}{\partial t}\Big|_y - A\left(\dot{\mathbf{T}}\cdot\mathbf{y}\right)\cdot\left(\mathbf{T}^{-1}\cdot\frac{\partial u}{\partial \mathbf{y}}\right) + \frac{\partial}{\partial \mathbf{y}}\cdot\left(\mathbf{F}\cdot\mathbf{T}^{-1}\right) &= S\\ A\frac{\partial u}{\partial t}\Big|_y + \frac{\partial}{\partial \mathbf{y}}\cdot\mathbf{F}'\Big|_t &= S', \quad \mathbf{F}' \equiv \mathbf{F}\cdot\mathbf{T}^{-1}, \quad S' = S + A\left(\dot{\mathbf{T}}\cdot\mathbf{y}\right)\cdot\left(\mathbf{T}^{-1}\cdot\frac{\partial u}{\partial \mathbf{y}}\right) \end{split}$$





# **Compressed FRC Results**



# **Specs and Comments on Run**

- Initial conditions:  $n = 10^{17}$  cm<sup>-3</sup>, T = 100 eV, B = 10 T, β = 80%,  $c_A = 1380$  km/s.
- ightharpoonup Wall motion:  $r_W = 20 \rightarrow 2$  cm,  $v_W = 2$  km/s,  $t_W = 100$   $\mu$ s.
- $\triangleright$  Grid (nx,ny,np) = (64,32,8), packed but not adaptive, nproc = 64.
- ➤ Walltime = 3.3 hr on new PSI Center SGI cluster.
- Falls short of fusion density and temperature; spheromak would make it.
- $\triangleright$  Magnetic vs. wall confinement,  $\beta < \text{or} > 1$ , problem of liner melting.
- > Braginskii regime; will extend to include all.





# **Status of Solver Development**

- Physics-based preconditioning reduces order of matrices and makes them more diagonally dominant.
- Schur complement:Ideal MHD force operator + ion viscosity + wall motion.
- ➤ Similar to time step split, but with outer Newton (PETSc/SNES) iteration to eliminate effects of approximation.
- > SNES convergence tests for goodness of Schur complement.
- Schur complement requires further development to include nonuniformity, density variation, moving grid, boundary conditions.
- ➤ Once it works correctly, the next step is testing scalable solvers: FETI-DP, Static Condensation, GMRES, ILU(k), Hypre/BoomerAMG.
- ➤ New possibility: Schur complement + threshold ILU + GMRES in SuperLU 4.0.



